Diagnosis and treatment of ankyloglossia and tied maxillary fraenum in infants using Er:YAG and 1064 diode lasers

L. Kotlow
Specialist Paediatric Dentist, Albany, New York, USA.

Key words: Lasers, ankyloglossia, infants.
Postal address: Dr L. Kotlow. 340 Fuller Road, Albany, New York, USA.
Email: kiddsteeth@aol.com

Abstract

BACKGROUND: Newborn babies often present oral conditions of ankyloglossia and tied maxillary fraena (lip-ties) associated with problems that can be related to breastfeeding. Many breastfeeding problems experienced by mothers and their babies may be attributed to abnormal attachments of the tongue and/or a maxillary lip-tie.

REVIEW: The various types of both lip and tongue ties are reviewed. The diagnostic tools for dental practitioners are evaluated and treatment options these affected infants using either a 1064 InGaAsP semiconductor (diode) laser or a 2940 Er:YAG laser are described. CONCLUSION: This approach provides treatment without the need for hospitalisation or general anaesthesia.

Introduction

A renewed interest in breastfeeding has brought to light new problems and challenges concerning infant feeding. After a mother and infant have learned the techniques of breastfeeding, there are still many mothers who experience sore nipples, blocked ducts, nipple and breast infection, and signs of low milk supply. Some infants are unable to transfer milk adequately, or are unable to maintain a good latch and seal to the breast. [Kotlow, 1999] These infants sleep and gain weight poorly and some are being diagnosed as ‘Failure to Thrive’. In situations of gastro oesophageal reflux (GOR) the reflux is misdiagnosed as a medical problem rather than an abnormal anatomical problem.

Wright and Schanler [2001] reviewed the history of the resurgence of breastfeeding at the end of the 20th century and reported that as of 1997, 60% of new mothers were breastfeeding. In 2006, the USA Center for Disease Control [2010] reported that in the USA over 73% and in Canada, Health Statistics Canada [2009] stated that over 85% of mothers elect to breastfeed. With the resurgence of breastfeeding, anatomical factors such as tongue-ties and fraenum/lip-ties need to be carefully considered as primary factors in creating breastfeeding difficulties [Corylos et al., 2004] and many of today’s practicing physicians were taught that treatment of tongue-tie, (ankyloglossia) is an outdated concept, a relic of times past and during the last several decades of predominant bottle-feeding, ankyloglossia was relegated to the status of a ‘non-problem’ because of the lack of significant impact upon bottle feeding behaviours. In 1995 Wiessinger and

Maxillary fraenum. It is suggested that the maxillary fraenum should be redefined and identified as a vertical band of lip tissue extending from the inside portion of the upper lip attaching to the alveolar mucosa of the maxillary arch [Kotlow, 2004a]. In certain instances this attachment may become a factor in limiting the mobility and function of the upper lip, at other times this tissue attachment may not appear to create any significant problems. In some infants, a prominent lip-tie may be the result of this tissue being inserted into three low positions in the maxillary gingival area and be a factor affecting infant latch and breastfeeding. The lip tissue may insert into the junction of the free and attached gingival tissues (Fig. 1a). In others it may insert into the area where the maxillary central incisors will eventually erupt (Fig. 1b) and in severe
instances it may be inserted in a wide fan like attachment into the area extending into the hard palate just anteriorly or into the incisive papilla (Fig. 1c). Depending on the insertion position, the band of maxillary lip tissue can limit the function and mobility of the upper lip creating a structural impediment to healthy breastfeeding.

This inability to properly flange and extend fully the upper lip can be a significant and often unrecognized contributing factor to an infant's inability to establish a good attachment and seal as well as providing an area for milk retention as the central incisors begin to erupt. In older infants, who continue to nurse at-will during the night, this location of the attachment of the lip may be a factor in the development of dental caries on the infant's maxillary central incisors [Gamer et al., 1977; Kottlow, 2010]. A wide, tight, prominent maxillary lip-tie will not resolve by itself. If left untreated, a nursing mother may continue to experience pain and other breastfeeding problems eventually resulting in premature cessation of the breastfeeding relationship. In order to assist in the diagnosis and treatment of a tightly attached upper lip, a simple classification has been developed [Kottlow, 2004c] based upon the position of the lip attachment to the maxillary arch’s soft tissue.

Ankyloglossia. There are many different ways the term lingual frenum can be described and the International Affiliation of Tongue-Tie Professionals [IATP, 2010 web site] compiled many of the many descriptions of ankyloglossia to develop this concise and most accurate definition of the lingual frenum [Green and Catlin, 2010].

The lingual frenum is described as the embryological remnant of tissue in the midline between the undersurface of the tongue and the floor of the mouth that restricts normal tongue movement [Hazelbacker, 2010]. An abnormal lingual frenum attachment can also be defined using the term ankyloglossia or tongue-tie and has been recognized since the time of Moses as in the book of Exodus, Moses said, “I am of slow speech and of a slow tongue,” [Catlin and De Haan, 1971]. Ankyloglossia can further be defined as a congenital abnormality of the attachment of the membrane that fastens the tongue to the floor of the mouth that may interfere with the mobility and function of the tongue. When the attachment of the tongue by the lingual frenum is inserted low down on the alveolar ridge into the area as shown in Figures 2a and b, an infant may not be able to correctly latch onto their mother's breast [Note, 1990. The degree of attachment may vary from being less than 3mm to as much as 12mm (Fig. 3 a-d).

A Class I lip attachment is often not seen or prominent and requires no treatment. This type of attachment is insignificant and causes no problems and is not shown here. A classification of the various degrees of ankyloglossia is shown in Figure 3. Class II, III or IV may contribute to breastfeeding problems and should be evaluated for possible treatment. A tight lip attachment will indicate a need for treatment. There are many articles concerning the treatment of ankyloglossia
Diagnosis. Newborn infants should be immediately examined at birth for any signs that the maxillary lip and lingual frenum attachments may play a factor in causing breastfeeding problems. An initial assessment can be completed quickly in the delivery room or home birthing room by placing a small finger under the tongue and dragging it across the floor of the mouth from the area of the future second baby molar and looking for any type of interference. The interference can be a small nodule or bump or a significant web of membrane tissue. This initial assessment should alert an infant’s physician and mother that if feeding difficulties or pain develops, when beginning to breastfeed within the first 24-48 hours, this might indicate that one or both abnormal attachments need revision [ABM, 2010].

Difficulties of breastfeeding. Of course, a mother and her baby must establish a deep asymmetric latch/seal to ensure that the nipple extends close to the junction of the hard and soft palate [Kemeran et al., 2002]. If a mother has attained a good latch, yet is still experiencing pain and/or the infant fails to sustain the latch, or the mother experiences gumming, chewing or chaffing of her nipple, lip tie and tongue-tie assessment are indicated. Breastfeeding under these conditions will not likely be pleasurable or satisfying and will often lead to disappointment, frustration and guilt for the mother. Mothers may become depressed and feel the problem is with them, not the infant.

Weight gain in these infants may be poor or be diagnosed as failing to thrive that can lead to termination of breastfeeding and early weaning and bottle-feeding. In many instances changing to a bottle is also problematic due to its effects on the hard palate, ingestion of air (aerophagia) resulting in reflux or gagging when solid foods are introduced. Correction of the ankyloglossia can often relieve these problems. It is this author’s experience that in many instances both the tongue-tie and maxillary lip-tie are found together and each may be a contributing cause of breastfeeding problems.

Diagnostic criteria. To aid in defining and diagnosing ankyloglossia a set of criteria has been developed [Kotlow, 2004a] upon both the clinical appearance of the tongue and the position of the frenum attachment. The following guidelines are a modification of these suggested guidelines for children above the age of 2.5-3 years of age. The simplest description involves the visual appearance of the insertion position of the lingual frenum into the area of the anterior portion of the tongue or its forward most tip, [Fernando, 1998; Hong et al. 2010] this is identified as an anterior tongue-tie (Fig. 2a). When the insertion is in the posterior area or submucosal area under the tongue, it is known as a posterior tongue-tie (Fig. 2b). In many instances the submucosal attachment may not be obvious and it may be necessary to push down on both sides of the frenum location to bring out the submucosal attachment (Fig. 2b).

A more specific detailed description is based upon identifying the location of the frenum insertion from a distance of approximately 12mm from the tip of the tongue to the insertion point at the base of the tongue (Fig. 3 a-d).

Surgical treatment of the lip-tied and tongue-tied newborn

Lasers. Once a clinical evaluation determines that revision of the lingual frenum attachment and the upper lip attachment to the maxillary gingival tissue will benefit the newborn infant [Marmet et al. 1990], the following procedures using lasers can proceed. The author uses two types of soft tissue lasers for revising these areas:

- the 1064 InGaAsP semiconductor diode laser is a soft tissue laser that has a wide range of pulsing wave settings (Technology4medicine San Clemente, USA),
- Erbium: YAG 2940 free-running pulsed (FRP) soft and hard tissue laser which has the five different pulse durations as well the ability to cut bone if required (FotonaPowerLase AT SPA by Lares, Chicago, USA) [Kotlow, 2004b].

A complete discussion of laser physics is not within the scope of this article but is described by Martens [2011] and Boj et al., [2011]. Prior to using any laser, a dental surgeon should be knowledgeable in laser physics and safety as well as the specific characteristics of the laser being used.

Indications for using lasers. Parents and physicians of newborn infants are very reluctant to place a child into an operating room and to have a general anaesthetic for an elective procedure. Often this is the only option available if an infant requires the surgical correction of soft tissue abnormalities of the tongue and/or upper lip. Other options may include the treatment in a physician’s office using electrosurgery, conventional scalpels or scissors to cut the tissue. Correcting these problems in the dental surgery/office with a laser has many advantages over the other methods. Lasers are bacteriocidal, usually bloodless; do not require placement of sutures, anaesthetic free, fast and a safe alternative for infants. The author has developed and recommends the following preoperative procedures.

Which laser to use is determined by examining the type of tissue to be lased. The more fibrotic the tissue the greater the energy needed to use a diode and therefore the Er: YAG is the laser of choice. The 1064 diode is chosen for the more pigmented or vascular the tissue. This is due to the physics of lasers and an understanding that the target tissue of the diode is pigment and the erbium:YAG is water. In most instances either laser will work adequately. Due to the higher investment cost of the Er:YAG laser most surgeons may only have the less expensive diode laser available

Recommended laser settings: The laser should be turned on and allowed to complete a warm up pretest. The settings...
are checked and the laser is test fired. For infant oral surgery, the following settings are recommended and used as starting levels by the author:

- **1064 diode**: The laser is set to 1.9-2.5 pulsed Watts, 24 msec on and 18 msec off (actual wattage = 1.09-1.43w, alternative setting is 1.5w, 800usec on and 400usec off. (Actual wattage = 1.0w), the fibre used is a 200u fibre;

- **Erbium:YAG (2940nm)** laser is set to 20 Hz, 55-80 Mj no water and the LP or 600msec pulse duration.

These setting have been previously determined and are often less than the author uses for older children and adults for similar procedures. This is due to infants requiring less energy to ablate the newborn’s immature soft tissues.

Preparation of the infant for laser surgery. For stability an infant should be wrapped in a suitable restraining device such as baby blankets of swaddling clothes (a sleeping bag-like pouch) or receiving blanket to control unwanted arm and leg movements (Fig. 4a). A cotton roll with sugar water is placed into an infant’s mouth (Fig. 4b) and the infant is allowed to suck on it for about a minute. Acetaminophen, using the manufacturer’s doses for an infant 6-11 pounds is given prior to surgery. Placement of appropriately sized laser goggles over the infant’s eyes (as well as the participating staff, other observers and surgeons) is required (Figs. 4c).

Figure 4. Illustration of preparation of an infant for laser surgery: a. wrapping of newborn infant; b. use of sugar-water soaked cotton wool roll; c. protective goggles fitted.

Revision of the maxillary lip-tie. Using the Er:YAG laser, the laser tip is used in a non-contact mode about 2-3mm up from the lowest insertion point (Fig. 5a). The upper lip is pulled slightly upward stretching the tissue and this is slowly lased, fully releasing the lip from the gingival tissue (Fig. 5b). When necessary the laser is then used to excise the remaining piece of tissue in the area of the gingival ridge. In infants, the lip is often very vascular and care should be taken to go slowly to control any bleeding. When using the 1064 Diode laser, the laser tip is used in a contact mode lasing at the same points and completed in the same manner. The typical complete procedure is illustrated for a one-week old infant for a maxillary frenum resection, using a 1064 semiconductor diode laser is shown in Figure 5 a-f. A typical post-operative result is shown in Figure 5g. The procedure for older infants would be similar.

Figure 5. Typical maxillary fraenectomy: a. using a 1064 semiconductor diode laser, initial lasing begins 2-3mm above the frenum insertion point; b. releasing the vertical tissue; c. releasing the remaining lip tissue; d. using a Erbium:YAG laser, a pre-surgical frenum; e. initial vertical band release; f. completed lip release; g. condition 4 days post-operatively, pulling lip upwards to touch the nose, a white area occurs showing normal healing of the tissues.
Post-operative care

It is extremely important that after the both lingual and lip attachments are resected that parents assume responsibility to keep the surgical sites open and not allow either site to heal back together and reattach. Written information and a clinical demonstration are provided to the parents stressing and explaining in detail what they need to do.

Post surgical care of the lip revision. Successful surgery is dependant on a parent performing lip stretching for about 6 days to prevent the area from healing back together. The author recommends that the lip be pulled upward until it touches the nose to release any reattachment two times a day. Healing is usually complete in 6-10 days and will usually allow the infant to achieve a better latch by fully being able to extend the upper lip and latching more deeply onto the mother's breast tissue.

At least twice-a-day a parent needs to firmly pull the upper lip forcefully upward towards the nose to release any signs of attachment (Fig. 6a). This should be completed at least once in the morning and again in the evening. It is also advised that this be repeated during feeding and when switching from one breast to the other. The sweetness of the breast milk acts as an ‘analgesic’ and the act of breastfeeding brings with it comfort to the infant if the infant is experience any post-surgical discomfort [Harrison et al., 2010].

Post surgical care of the lingual frenum revision. The author has developed two alternative methods for opening up the lingual surgical site. One involves placing the infant's head on a parent's lap facing away from the parent and placing the index fingers of each hand on the lateral areas of the tongue near the surgical area (Fig. 6a). Then pushing firmly downward toward the throat with significant pressure to see the area open and view entire diamond shape of the surgical area.

The second method (Fig. 6b), which seems easier for many parents, is to use a tongue blade placed at the base of the tongue. Then using the tongue blade, push up on the tongue and down with the other hand on the lower jaw, use adequate force to open the entire diamond shaped area of the surgery. This should be completed twice a day, usually prior to morning and evening feedings either just prior to breastfeeding or when switching from one breast to the other. It is also recommended that prior to each additional feeding the mother sweep her finger across the floor of the mouth opening the area.

Stretching both the lingual and lip surgical sites should be done daily for at least 6 days. The infant should be seen for post-surgical visit four days after the surgery. During this visit the surgeon can assess the parent's compliance and if needed reopen the area before it heals. A second examination should be completed at two weeks (Fig. 6c).
In addition to completing daily stretching of the tongue, facial and lip massaging often helps the infant reduce stressed and tight facial and lip muscles (Fig. 7a-c). It is recommended that a mother gently massage the cheeks for the first week after surgery. A second massage that is often helpful to familiarise the infant with the new found freedom to properly suck and latch is to use a finger in a circular motion around the lip and slowly allowing the infant to root for the finger.

Post-operative management of pain. To prevent or reduce post-surgical discomfort, it is recommended to give an infant the appropriate dose of acetaminophen at the time of surgery and again at least at 4 and 8 hours post surgery [Dollberg et al., 2006].

Conclusion
Tongue-tied and lip-tied infants may develop significant breastfeeding problems impacting both the mother and the infant. Using lasers to correct these abnormalities may provide both the infant and mother relief and allow for improved, pain-free breast feeding without the need to place the infant into the operating room or under general anaesthesia. In most instances post-operative, breastfeeding related problems will usually disappear or improve significantly within a week, Mothers stated that they began to look forward to their infant’s breastfeeding as a positive experience, rather than feeling that the breastfeeding would be painful.

Acknowledgements
Additional information concerning breastfeeding and ankyloglossia can be found using the links: International Affiliation of Tongue-tie Professionals web site: www.tongue-tie.org; Academy of Breastfeeding Clinic and Institute web site: www.bfmed.com; Newman Breast Feeding web site: www.nbcil.com; Carmen Fernando: www.tonguetie.net. Dr. Kotlow has received no financial support for this article from any outside sources and provides contact information on manufactures due to using these devises during treatment of his patients.
References

